Skip to main content

Interfacing HC-SR04 Ultrasonic Sensor with Raspberry Pi

By:prayag nao

Ultrasonic distance sensors are designed to measure distance between the source and target using ultrasonic waves. We use ultrasonic waves because they are relatively accurate across short distances and don’t cause disturbances as they are inaudible to human ear.
HC-SR04 is a commonly used module for non contact distance measurement for distances from 2cm to 400cm. It uses sonar (like bats and dolphins) to measure distance with high accuracy and stable readings. It consist of an ultrasonic transmitter, receiver and control circuit. The transmitter transmits short bursts which gets reflected by target and are picked up by the receiver. The time difference between transmission and reception of ultrasonic signals is calculated. Using the speed of sound and ‘Speed = Distance/Time‘ equation, the distance between the source and target can be easily calculated.


HC-SR04 ultrasonic distance sensor module has four pins :
  • VCC – 5V, input power
  • TRIG – Trigger Input
  • ECHO – Echo Output
  • GND – Ground
Working of HC-SR04

Ultrasonic Module Operation



  1. Provide trigger signal to TRIG input, it requires a HIGH signal of atleast 10μS duration.
  2. This enables the module to transmit eight 40KHz ultrasonic burst.
  3. If there is an obstacle in-front of the module, it will reflect those ultrasonic waves
  4. If the signal comes back, the ECHO output of the module will be HIGH for a duration of time taken for sending and receiving ultrasonic signals. The pulse width ranges from 150μS to 25mS depending upon the distance of the obstacle from the sensor and it will be about 38ms if there is no obstacle.
 

Calibration

For accurate distance readings the output can be calibrated using a ruler. In the below program a calibration of 0.5 cm is added

Python Programming

import RPi.GPIO as GPIO                    #Import GPIO library
import time                                #Import time library
GPIO.setmode(GPIO.BCM)                     #Set GPIO pin numbering 

TRIG = 23                                  #Associate pin 23 to TRIG
ECHO = 24                                  #Associate pin 24 to ECHO

print "Distance measurement in progress"

GPIO.setup(TRIG,GPIO.OUT)                  #Set pin as GPIO out
GPIO.setup(ECHO,GPIO.IN)                   #Set pin as GPIO in

while True:

  GPIO.output(TRIG, False)                 #Set TRIG as LOW
  print "Waitng For Sensor To Settle"
  time.sleep(2)                            #Delay of 2 seconds

  GPIO.output(TRIG, True)                  #Set TRIG as HIGH
  time.sleep(0.00001)                      #Delay of 0.00001 seconds
  GPIO.output(TRIG, False)                 #Set TRIG as LOW

  while GPIO.input(ECHO)==0:               #Check whether the ECHO is LOW
    pulse_start = time.time()              #Saves the last known time of LOW pulse

  while GPIO.input(ECHO)==1:               #Check whether the ECHO is HIGH
    pulse_end = time.time()                #Saves the last known time of HIGH pulse 

  pulse_duration = pulse_end - pulse_start #Get pulse duration to a variable

  distance = pulse_duration * 17150        #Multiply pulse duration by 17150 to get distance
  distance = round(distance, 2)            #Round to two decimal points

  if distance > 2 and distance < 400:      #Check whether the distance is within range
    print "Distance:",distance - 0.5,"cm"  #Print distance with 0.5 cm calibration
  else:
    print "Out Of Range"                   #display out of range

 

 Run above program.

Output

Ultrasonic distance sensor output
Ultrasonic distance sensor output
Distance is measured every two seconds and displayed.

Comments

Popular posts from this blog

Real life Jarvis-Talk With Your Computer like Jarvis in Iron Man ....!

By:Prayag nao                                            Code to Make your Computer like Jarvis New Speech macro..>> Choose Advanced and change the code like this.. <speechMacros>   <command>     <listenFor></listenFor>   </command> </speechMacros> You have to add a commands  <listenFor>........</listenFor> - computer listens the words you specify here and respond accordingly. <speak>............</speak> - computer speaks what is written in this field according to the command which it got. Similarly, You can Edit more commands in the same way.   <speechMacros> <command> <listenFor>What's going on dude</listenFor> <speak>Nothing special tony</speak> </command> </speechMacros> ...

Types of gears used in daily life

By:Prayag nao Spur Gears: Spur gears are the most common type used. Tooth contact is primarily rolling, with sliding occurring during engagement and disengagement. Some noise is normal, but it may become objectionable at high speeds.   Rack and Pinion. Rack and pinion gears are essentially a linear shaped variation of spur gears The spur rack is a portion of a spur gear with an infinite radius. Internal Ring Gear: Internal gear is a cylindrical shaped gear with the meshing teeth inside or outside a circular ring. Often used with a spur gear. Internal ring gears may be used within a planetary gear arrangement. ...

How does a handpump work ?

The most common tool to access a life source like water — this innovation boasts of none of the accolades that modern machines enjoy. Yet the simplicity and efficiency of design drives a sea of devices that permeate our lives at home and in industries. The unsung hero that India should be particularly proud of is called India Mark II. A human-powered pump designed to lift water from a depth of 50 m or less, it is the world’s most widely used water hand pump. It was designed in 1970 through the joint efforts of the government of India, UNICEF and WHO. Its purpose was to address the deathly problem of paucity of water and draught in rural areas of developing nations. By the mid 1990s, five million of the pumps had been manufactured and installed around the world. Hand Pump Parts: Handle Pump rod water outlet Piston Piston valve Foot valve Rising main Suction lift What does it do? Simply defined, hand pumps are manually operated pumps that use human power and ...